翻訳と辞書
Words near each other
・ Lindsley Parsons III
・ Lindstedt
・ Lindstedt (Gardelegen)
・ Lindston Loch, South Ayrshire
・ Lindstradt air rifle
・ Lindstrand Balloons
・ Lindstrom (disambiguation)
・ Lindstrom Field
・ Lindstrom House
・ Lindstrom Peninsula
・ Lindstrom Ridge
・ Lindstrom, Minnesota
・ Lindström
・ Lindström (company)
・ Lindström motocross
Lindström quantifier
・ Lindström's theorem
・ Lindström–Gessel–Viennot lemma
・ Lindstrøm & Prins Thomas
・ Lindstrøm Peak
・ Lindswell Kwok
・ Lindsy McLean
・ Lindt & Sprüngli
・ Lindt (disambiguation)
・ Lindtmayer
・ Lindtneria
・ Lindtorf
・ Lindtveit
・ Lindu
・ Linduan rousette


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lindström quantifier : ウィキペディア英語版
Lindström quantifier
In mathematical logic, a Lindström quantifier is a generalized polyadic quantifier. They are a generalization of first-order quantifiers, such as the existential quantifier, the universal quantifier, and the counting quantifiers. They were introduced by Per Lindström in 1966. They were later studied for their applications in logic in computer science and database query languages.
==Generalization of first-order quantifiers==
In order to facilitate discussion, some notational conventions need explaining. The expression
: \phi^" TITLE="x,\bar">)\}
for ''A'' an ''L''-structure (or ''L''-model) in a language ''L'',''φ'' an ''L''-formula, and \bar a tuple of elements of the domain dom(''A'') of ''A''. In other words, \phi^ of free variables, \phi^} denotes an ''n''-ary relation defined on dom(''A''). Each quantifier Q_A is relativized to a structure, since each quantifier is viewed as a family of relations (between relations) on that structure. For a concrete example, take the universal and existential quantifiers ∀ and ∃, respectively. Their truth conditions can be specified as
: A\models\forall x\phi() \iff \phi^" TITLE="x,\bar">) \iff \phi^},\psi^})\in Q_A
where
: \phi^}=\" TITLE="\bar,\bar">)\}
for an ''n''-tuple \bar of variables.
Lindström quantifiers are classified according to the number structure of their parameters. For example Qxy\phi(x)\psi(y) is a type (1,1) quantifier, whereas Qxy\phi(x,y) is a type (2) quantifier. An example of type (1,1) quantifier is Hartig's quantifier testing equicardinality, i.e. the extension of . An example of a type (4) quantifier is the Henkin quantifier.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lindström quantifier」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.